Dear Garrett Families,

In light of schools closing, your teachers have prepared some materials and lessons/activities for your students while they are home. These have been sent home with your student. Please note that incentives will be given for returned work. The hope is that this will help enrich our students' learning during this time away from school. You will find a 10 day plan along with a packet of work on our school website that can be downloaded if your child was not able to bring it home from school. Resources for special areas and medical/food needs can also be found there. I know this is a strange and difficult time for us all but I feel confident that our community will come out of this stronger than ever. When we care for one another, we succeed in more than one part of life. If you have any questions regarding the work that has been prepared or if you need suggestions for your child, please feel free to do so your child’s teacher. They will do their best to respond in a timely manner. Take care.

Sincerely,
Dr. Erik Melton – Principal

emelton@hazelwoodschools.org

School Website (packets can be found here):
https://www.hazelwoodschools.org/Domain/13

Facebook:
https://www.facebook.com/GarrettElementarySchool/?ref=bookmarks
Talking to Children About COVID-19 (Coronavirus)
A Parent Resource

A new type of coronavirus, abbreviated COVID-19, is causing an outbreak of respiratory (lung) disease. It was first detected in China and has now been detected internationally. While the immediate health risk in the United States is low, it is important to plan for any possible outbreaks if the risk level increases in the future.

Concern over this new virus can make children and families anxious. While we don’t know where and to what extent the disease may spread here in the United States, we do know that it is contagious, that the severity of illness can vary from individual to individual, and that there are steps we can take to prevent the spread of infection. Acknowledging some level of concern, without panicking, is appropriate and can result in taking actions that reduce the risk of illness. Helping children cope with anxiety requires providing accurate prevention information and facts without causing undue alarm.

It is very important to remember that children look to adults for guidance on how to react to stressful events. If parents seem overly worried, children’s anxiety may rise. Parents should reassure children that health and school officials are working hard to ensure that people throughout the country stay healthy. However, children also need factual, age-appropriate information about the potential seriousness of disease risk and concrete instruction about how to avoid infections and spread of disease. Teaching children positive preventive measures, talking with them about their fears, and giving them a sense of some control over their risk of infection can help reduce anxiety.

Specific Guidelines

Remain calm and reassuring.
- Children will react to and follow your verbal and nonverbal reactions.
- What you say and do about COVID-19, current prevention efforts, and related events can either increase or decrease your children’s anxiety.
- If true, emphasize to your children that they and your family are fine.
- Remind them that you and the adults at their school are there to keep them safe and healthy.
- Let your children talk about their feelings and help reframe their concerns into the appropriate perspective.

Make yourself available.
- Children may need extra attention from you and may want to talk about their concerns, fears, and questions.
- It is important that they know they have someone who will listen to them; make time for them.
- Tell them you love them and give them plenty of affection.
Avoid excessive blaming.
- When tensions are high, sometimes we try to blame someone.
- It is important to avoid stereotyping any one group of people as responsible for the virus.
- Bullying or negative comments made toward others should be stopped and reported to the school.
- Be aware of any comments that other adults are having around your family. You may have to explain what comments mean if they are different than the values that you have at home.

Monitor television viewing and social media.
- Limit television viewing or access to information on the Internet and through social media. Try to avoid watching or listening to information that might be upsetting when your children are present.
- Speak to your child about how many stories about COVID-19 on the Internet may be based on rumors and inaccurate information.
- Talk to your child about factual information of this disease—this can help reduce anxiety.
- Constantly watching updates on the status of COVID-19 can increase anxiety—avoid this.
- Be aware that developmentally inappropriate information (i.e., information designed for adults) can cause anxiety or confusion, particularly in young children.
- Engage your child in games or other interesting activities instead.

Maintain a normal routine to the extent possible.
- Keep to a regular schedule, as this can be reassuring and promotes physical health.
- Encourage your children to keep up with their schoolwork and extracurricular activities, but don’t push them if they seem overwhelmed.

Be honest and accurate.
- In the absence of factual information, children often imagine situations far worse than reality.
- Don’t ignore their concerns, but rather explain that at the present moment very few people in this country are sick with COVID-19.
- Children can be told this disease is thought to be spread between people who are in close contact with one another—when an infected person coughs or sneezes.
- It is also thought it can be spread when you touch an infected surface or object, which is why it is so important to protect yourself.
- For additional factual information contact your school nurse, ask your doctor, or check the https://www.cdc.gov/coronavirus/2019-ncov/index.html website.

Know the symptoms of COVID-19.
- The CDC believes these symptoms appear in a few days after being exposed to someone with the disease or as long as 14 days after exposure:
 - Fever
 - Cough
 - Shortness for breath
- For some people the symptoms are like having a cold; for others they are quite severe or even life threatening. In either case it is important to check with your child’s healthcare provider (or yours) and follow instructions about staying home or away from public spaces to prevent the spread of the virus.

Review and model basic hygiene and healthy lifestyle practices for protection.
- Encourage your child to practice every day good hygiene—simple steps to prevent spread of illness:
 - Wash hands multiple times a day for at least 20 seconds (singing Twinkle, Twinkle Little Star slowly takes about 20 seconds).
 - Cover their mouths with a tissue when they sneeze or cough and throw away the tissue immediately, or sneeze or cough into the bend of their elbow. Do not share food or drinks.
community leaders to prevent germs from spreading.
- Upper middle school and high school students are able to discuss the issue in a more in-depth (adult-like) fashion and can be referred directly to appropriate sources of COVID-19 facts. Provide honest, accurate, and factual information about the current status of COVID-19. Having such knowledge can help them feel a sense of control.

Suggested Points to Emphasize When Talking to Children
- Adults at home and school are taking care of your health and safety. If you have concerns, please talk to an adult you trust.
- Not everyone will get the coronavirus (COVID-19) disease. School and health officials are being especially careful to make sure as few people as possible get sick.
- It is important that all students treat each other with respect and not jump to conclusions about who may or may not have COVID-19.
- There are things you can do to stay healthy and avoid spreading the disease:
 - Avoid close contact with people who are sick.
 - Stay home when you are sick.
 - Cover your cough or sneeze into your elbow or a tissue, then throw the tissue in the trash.
 - Avoid touching your eyes, nose, and mouth.
 - Wash hands often with soap and water (20 seconds).
 - If you don’t have soap, use hand sanitizer (60–95% alcohol based).
 - Clean and disinfect frequently touched objects and surfaces using a regular household cleaning spray or wipe.

Additional Resources

Coping With Stress During Infectious Disease Outbreaks, https://store.samhsa.gov/product/Coping-With-Stress-During-Infectious-Disease-Outbreaks/sma14-4885

For more information related to schools and physical and mental health, visit www.nasponline.org and www.nasn.org.

© 2020, National Association of School Psychologists, 4340 East West Highway, Suite 402, Bethesda, MD 20814, 301-657-0270
• Practice giving fist or elbow bumps instead of handshakes. Fewer germs are spread this way.
• Giving children guidance on what they can do to prevent infection gives them a greater sense of control over disease spread and will help to reduce their anxiety.
• Encourage your child to eat a balanced diet, get enough sleep, and exercise regularly; this will help them develop a strong immune system to fight off illness.

Discuss new rules or practices at school.
• Many schools already enforce illness prevention habits, including frequent hand washing or use of alcohol-based hand cleansers.
• Your school nurse or principal will send information home about any new rules or practices.
• Be sure to discuss this with your child.
• Contact your school nurse with any specific questions.

Communicate with your school.
• Let your school know if your child is sick and keep them home. Your school may ask if your child has a fever or not. This information will help the school to know why your child was kept home. If your child is diagnosed with COVID-19, let the school know so they can communicate with and get guidance from local health authorities.
• Talk to your school nurse, school psychologist, school counselor, or school social worker if your child is having difficulties as a result of anxiety or stress related to COVID-19. They can give guidance and support to your child at school.
• Make sure to follow all instructions from your school.

Take Time to Talk

You know your children best. Let their questions be your guide as to how much information to provide. However, don’t avoid giving them the information that health experts identify as critical to ensuring your children’s health. Be patient; children and youth do not always talk about their concerns readily. Watch for clues that they may want to talk, such as hovering around while you do the dishes or yard work. It is very typical for younger children to ask a few questions, return to playing, then come back to ask more questions.

When sharing information, it is important make sure to provide facts without promoting a high level of stress, remind children that adults are working to address this concern, and give children actions they can take to protect themselves.

Information is rapidly changing about this new virus—to have the most correct information stay informed by accessing https://www.cdc.gov/coronavirus/2019-ncov/index.html.

Keep Explanations Age Appropriate
• Early elementary school children need brief, simple information that should balance COVID-19 facts with appropriate reassurances that their schools and homes are safe and that adults are there to help keep them healthy and to take care of them if they do get sick. Give simple examples of the steps people take every day to stop germs and stay healthy, such as washing hands. Use language such as “adults are working hard to keep you safe.”
• Upper elementary and early middle school children will be more vocal in asking questions about whether they truly are safe and what will happen if COVID-19 comes to their school or community. They may need assistance separating reality from rumor and fantasy. Discuss efforts of school and
Organizations that offer free food and meals (name and contact number).

<table>
<thead>
<tr>
<th>Organization</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazelwood Baptist Church</td>
<td>731-2244</td>
</tr>
<tr>
<td>Operation Food Search-Hunger Hotline</td>
<td>726-5355 (x3)</td>
</tr>
<tr>
<td>TEAM 831-0879</td>
<td></td>
</tr>
<tr>
<td>Adventist Community Services</td>
<td>429-0216</td>
</tr>
<tr>
<td>Salvation Army (Mon and Wed 10-12) 423-7770</td>
<td></td>
</tr>
<tr>
<td>St. Louis Area Food Bank, (314) 292-6262—Has multiple food programs to meet food needs for wide variety of students & families;</td>
<td></td>
</tr>
<tr>
<td>North County Meals on Wheels, (314) 953-6800</td>
<td></td>
</tr>
<tr>
<td>Zion United Church of Christ 314-741-1590 (Tuesday 9-12:30) photo ID, gross ID, live in St. Louis County</td>
<td></td>
</tr>
<tr>
<td>Food 4 Thought</td>
<td></td>
</tr>
<tr>
<td>Hazelwood Baptist Church - 731-2244</td>
<td></td>
</tr>
<tr>
<td>Trinity Church 314-838-8820</td>
<td></td>
</tr>
<tr>
<td>Urban League, CAASTL, Jewish Family Food Pantry</td>
<td></td>
</tr>
<tr>
<td>Ward Chapel AME, 11410 Old Halls Ferry Rd. 63033</td>
<td>314-741-0112</td>
</tr>
<tr>
<td>TEAM Food Pantry, 265 St. Catherine, 63033</td>
<td>314-831-0879</td>
</tr>
<tr>
<td>Community Helping Ministry, 3770 McKelvey, 63044</td>
<td>314-770-2216</td>
</tr>
<tr>
<td>Urban League, 8960 Jennings Station Rd., 63136</td>
<td>314-388-9840</td>
</tr>
<tr>
<td>Helping Hands Food Ministry, 5710 N. Highway 67, 63034</td>
<td>314-741-4222</td>
</tr>
<tr>
<td>Sts. John and James Church, 120 N. Elizabeth, 63135</td>
<td>314-524-0500</td>
</tr>
</tbody>
</table>
Hotlines for COVID

Missouri

St. Louis City Department of Health: (314) 612-5100
St. Louis County Department of Health: (314) 615-2660
Jefferson County Health Department: (636) 797-3737
St. Charles County Health Department: (636) 949-7400
Missouri State Health Department 24 hour COVID-19 Hotline: (877) 435-8411

Illinois

St. Clair County Health Department: (618) 233-7703 ext. 7 or DPH.SICK@ILLINOIS.GOV
Operation Food Search will provide free meals to children Monday–Friday at select SLCL locations during the school year. Stop by after school and enjoy a nutritious meal along with activities for kids. Program begins August 12 and will run through the school year.

Meals will be available free of charge for children ages 5–18.

LOCATIONS

FLORISSANT VALLEY BRANCH
Monday–Friday, 3:30–4:30 p.m.

INDIAN TRAILS BRANCH
Monday–Friday, 3:30–4:30 p.m.

JAMESTOWN BLUFFS BRANCH
Monday–Friday, 3:30–4:30 p.m.

LEWIS & CLARK BRANCH
Monday–Friday, 3:30–4:30 p.m.

NATURAL BRIDGE BRANCH
Monday–Friday, 3:30–4:30 p.m.

PRAIRIE COMMONS BRANCH
Monday–Friday, 3:30–4:30 p.m.

ROCK ROAD BRANCH
Monday–Friday, 3:30–4:30 p.m.

WEBER ROAD BRANCH
Monday–Friday, 2:30–4:00 p.m.

Program sites are accessible. Upon two weeks' notice, accommodations will be made for persons with disabilities. Call 314-994-8300 or visit www.slcl.org.
FREE! MOBILE MARKET

Last Tuesday of Every Month 6-7:30pn
Trinity Church 3515 Shackelford Rd.

Possible items: fruit, veggies, bread, dairy, eggs, meat...*

EMPOWER North County

trinity CHURCH
love God + love people +
serve our community

Foodbank
St. Louis Area Foodbank

*while supplies last
Hazelwood School District
Fifth Grade Activities

Directions: On the first day of school closures, students should complete activities for each day.
Reading and math daily activity

<table>
<thead>
<tr>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
</table>
| Day 1| - Read “Giants of California”. Underline or circle transition words or phrases used within the story. At the top, write the text structure this article is written in. Answer the comprehension questions that go along with the article.
 - Math Review 1 Worksheet |
| Day 2| - Re-read “Giants of California”. Write a paragraph explaining how the sequoia trees have been able to grow and survive. Use at least two transition words in your paragraph. Also be sure to use capital letters and punctuation with all of your sentences.
 - Prepositional Phrases Lesson 7
 - Math Review 2 Worksheet |
| Day 3| - Read “A Surprise on the Sea Floor”. Underline or circle transition words or phrases used within the story. At the top, write the text structure this article is written in. Answer the comprehension questions that go along with the article.
 - Math Review 3 Worksheet |
| Day 4| - Re-read “A Surprise on the Sea Floor.” Write a paragraph comparing and contrasting coral growth rings to tree growth rings. Use at least two transition words in your paragraph. Also be sure to use capital letters and punctuation with all of your sentences.
 - Dependent and Independent Clauses Lesson 9
 - Math Review 4 Worksheet |
| Day 5| - Read “Bees: Don’t Buzz Off”. Underline or circle transition words or phrases used within the story. At the top, write the text structure this article is written in. Answer the comprehension questions that go along with the article.
 - Math Review 5 Worksheet |
| Day 6| - Re-read “Bees: Don’t Buzz Off.” Write a paragraph convincing someone to help save the bees. Use information from the article to support your position that we should do what we can to save the bees. Use at least two transition words in your paragraph. Also be sure to use capital letters and punctuation with all of your sentences.
 - Avoiding Fragments, Runons, Comma Splices Lesson 10
 - Math Review 6 Worksheet |
| Day 7| - Read “A Lake on Mars”. Underline or circle transition words or phrases used within the story. At the top, write the text structure this article is written in. Answer the comprehension questions that go along with the article.
 - Math Review 7 Worksheet |
| Day 8| - Re-read “A Lake on Mars.” Write a fictional story about a character who |
| | goes to live on Mars. Use at least two transition words in your paragraph. Also be sure to use capital letters and punctuation with all of your sentences.
| | • Adjectives Lesson 17
| | • Math Review 8 Worksheet
| Day 9 | • Read “New Life at Yellowstone.” Underline or circle transition words or phrases used within the story. At the top, write the text structure this article is written in. Answer the comprehension questions that go along with the article.
| | • Math Review 9 Worksheet
| Day 10 | • Re-read “New Life at Yellowstone.” Create a chart that shows the advantages and disadvantages of letting fires burn. This can be folding your paper in two and writing pros on one side and cons on the other.
| | • Adverbs Lesson 18
| | • Math Review 10 Worksheet

Additional Learning Opportunities:
• Redbird Math
• USA Test Prep (Independent Practice for each subject area)
• Read Theory
• Analogy Crosswords
• Check out only 2 Clicks for Additional Activities that may be posted (www.only2clicks.com/pages/kratzer and www.only2clicks.com/pages/ogden)

Vooks is a great resource to use in the home with your children. Vooks is a streaming library of ad-free, kid-safe animated read-aloud storybooks, trusted by teachers and enjoyed by millions of children around the world every week. It is an entire library of storybooks, brought to life, to help encourage the love of reading. You can sign up for Vooks and use the take-home resources to help keep your children reading 20 minutes a day during these extraordinary times. Sign Up Link: www.vooks.com/parent-resources
Solve each problem.

1) \[32.99 \times 4.81 \]

2) \[813 \times 58 \]

3) \[41 - 20.55 = \]

4) \[8 + \frac{1}{2} = \]

5) Answer as a mixed number (if possible).
 \[2 \frac{4}{5} + 1 \frac{1}{3} = \]

6) \[44 + 2 \times (3 + 8 \times 8) + 2 - 2 = \]

7) Find the volume (in cm).

8) Write the coordinates of the Star.

9) Use the visual model to solve:
 \[\frac{1}{3} \times \frac{2}{3} = \]
Giants of California

Article

PART 1

FRESNO, California. How tall are the trees in your neighborhood? Now imagine a tree that's 26 stories high and thick enough that if it were hollow, you could comfortably camp inside. It's not a tree out of a storybook. There really are gargantuan trees like this. They're called giant sequoias. They're native to the Sierra Nevada Mountains of California.

Giant sequoias are so huge that the biggest ones have names. And they're ranked by size. One amazing tree is the General Sherman. It is the largest (though not the tallest) tree on the planet. According to the latest data, it is 274.9 feet (83.8 meters) high, 102.6 feet (31.3 meters) in circumference, and 36.5 feet (11.1 meters) in diameter at the base. That's about half the width of a high school gym. And like many other giant sequoias, the General Sherman is still growing.

Clearly, a tree this large must be very old. Scientists think that the General Sherman is about 2,500 years old. That means it was a sapling when, across a continent and an ocean, Ancient Greece was at its height.

The General Sherman is not alone. A giant sequoia called The President (named for U.S. President Warren G. Harding) measures some 93 feet (28 meters) in circumference. Like the General Sherman, the 3,240-year-old tree grows in Sequoia National Park. Scientists measured The President, and it has now been named the second-largest tree in the world. It's about 15 percent larger than the third-largest tree, the General Grant.

"I consider [The President] to be the greatest tree in all of the mountains of the world," said Stephen Sillett. Sillett is on a team of scientists from Humboldt State University. This group is studying the giant trees of California.

Sillett and his team discovered that The President was second largest—not third—in size rankings. They discovered a few other things, too. They took 15 half-centimeter-wide core samples of The President to determine how fast the tree's growing. From this they learned that the tree's growth was stunted in the cold year of 1580. Back then, temperatures in the Sierra Nevada hovered near freezing, even in the summer. They also learned that ancient trees like The President don't slow down with age. They actually grow more quickly as they get older. The President adds about one cubic meter of wood a year during its short six-month growing season. This makes it one of the fastest-growing trees in the world. It's hard to imagine how much larger a giant like The President could get in just a few hundred more years.

Sillett and his team study many things about these gigantic trees. They've found that The President holds another unmatched record that could make a difference in our future. Its 2 billion leaves are thought to be the most of any tree on the planet. All of those leaves make it one of the best trees at absorbing carbon dioxide, which scientists believe is one cause of harmful climate change.

"We're not going to save the world with any one strategy. But part of the value of these great trees is this [part]. And we're trying to get a handle on the math behind that," Sillett said.
Why do giant sequoias grow so big and for so long? Their wood can't be hurt by the bugs and diseases that hurt other trees. And their thick bark keeps them safe from fast-moving fires.

It's that resiliency that makes sequoias and their even taller coastal redwood cousin worthy of being protected, Sillett said. He doesn't care that The President hasn't caught up to the General Sherman. For him, it's not a contest.

"They're all [amazing] in their own way," Sillett said.

The Associated Press contributed to this story.

PART 2

Dig Deeper

Scientists want to know more about the sequoias. They want to know how these remarkable trees are able to live for thousands of years in an environment that is always changing. All ecosystems continually change because of environmental changes. Sometimes, these changes are caused by external stresses. Fires, floods, erosion (when soil is washed away by wind or water), deforestation (the cutting down of trees), pollution, and farming are all external stresses.

Some ecosystems have many different kinds of plant and animal species (and genes). Such ecosystems are said to have higher biological diversity, or biodiversity. Ecosystems with higher biodiversity can recover more easily from external stresses. Why is this? There are more kinds of genes and species. So, it's easier for the ecosystem to carry out natural processes (e.g., water and carbon cycles, population dynamics, and succession). In other words, when there are more plants and animal species in an ecosystem, there are more links in food webs and food chains. There are also more plants to help with photosynthesis and decomposition. What else? There are more genes for succession and evolution. This helps keep the ecosystem together.

The biodiversity of an ecosystem therefore affects its sustainability. Sustainability means keeping up ecological processes over a long period of time. Food chains and population dynamics are both ecological processes. If an ecosystem can keep its structure and function over time, it is said to be sustainable. Higher biodiversity means a more sustainable ecosystem. Lower biodiversity means a less sustainable ecosystem.

Human activities can harm biodiversity. Many of the ways humans use natural resources create pollution. Pollution is released into the soil, air, and water. Chemicals, bacteria, and dirt are pollutants. Even materials that are usually not harmful can cause pollution when they build up in one location. Pollution can become common in an ecosystem. If so, living things may be threatened. In what ways? Plant and animal populations may decrease. Biodiversity may decline.

Air quality affects entire ecosystems. In the U.S., motor vehicles, factories, and power plants are the main causes of air pollution. These things burn fossil fuels. Burning fossil fuels gives off sulfur dioxide into the air. It also gives off nitrogen dioxide and carbon monoxide.

Water quality also affects biodiversity in ecosystems. Chemicals and wastes cause water pollution. These materials drain off of farm fields, animal feedlots, and landfills. Oil spills also cause water pollution; so do soil erosion and wastewater from towns. Wastes from industries, such as mining, also cause water pollution.

Dictionary

biodiversity (noun) the number and variety of living things found on Earth or within an ecosystem

circumference (noun) the line that goes around the outside of a circle shape

cubic meter (noun) a space that is 1 meter long, 1 meter wide, and 1 meter deep

pollution (noun) the giving off of harmful materials into the air, land, or water
rank (verb) to put things in order from first to last

resiliency (noun) the ability to easily recover from a setback
PART 1

Question 1

Main Idea

Based on the article, which best replaces the question mark in the diagram above?

A. Some giant sequoia trees are large enough that a person could sleep inside.
B. Some scientists discovered that The President didn't grow in 1580.
C. Giant sequoias have thick bark that keeps them safe from fast-moving fires.
D. Giant sequoias are able to absorb carbon dioxide, which helps the planet.

Question 2

What cause-and-effect relationship is described in this article?

A. Giant sequoias grow so large because their thick bark keeps them safe from fast-moving fires.
B. Giant sequoias grow so large because they have the most leaves of any tree on the planet.
C. Giant sequoias grow for so long because they start to grow more slowly as they get older.
D. Giant sequoias grow for so long because few humans have settled in the Sierra Nevada Mountains.

Question 3
Which is the closest synonym for the word ranked, as it is used in this article?

A Sorted
B Named
C Multiplied
D Hauled

Question 4
This article would help a student write an essay on _________.

A Plants native to California
B The best strategy to stop climate change
C General Sherman's career
D Bugs and diseases that harm trees

Question 5
In what way are the trees called General Sherman and The President different?

A The General Sherman is large enough to have been given a name.
B The President has bark thick enough to keep it safe from fires.
C The General Sherman is the largest tree on the planet.
D The President has been studied by scientists.

Question 6
The article states:

[Giant sequoias are] native to the Sierra Nevada Mountains of California.

Which would be the closest antonym for the word native?

A Natural
B Common
C Foreign
D Helpful

Question 7
Which question is not answered by the article?

A. What are the names of the two smallest sequoias in the Sierra Nevada Mountains?
B. Why did scientists take 15 half-centimeter-wide samples from sequoia trees?
C. Why might scientists who study climate change be interested in giant sequoias?
D. What type of California tree is known to be even taller than giant sequoias?

Question 8
Which best summarizes the first paragraph of the article?

A. Giant sequoias can be compared with other trees.
B. Giant sequoias are known to live in some mountains.
C. Giant sequoias are even larger than most people might imagine.
D. Giant sequoias are not trees out of a storybook.
Achieve 3000 Article:

Step 1: Carefully read the article.

Step 2: Vocabulary - After reading the article, use the "dictionary" at the end of the article to complete the table below.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>A sentence including the vocabulary word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2 cont: Summarize the article

After you carefully read the article, go back to the beginning and reread while completing the organizer below.

<table>
<thead>
<tr>
<th>What is the topic of the article? (a few words)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What is the main idea of the article? (a sentence telling the most important idea)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Why was this article written? (what does the author want us to know about the topic/main idea)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Solve each problem.

1) 7.3×3.5
2) 859×96
3) $26.71 + 21.5 =$

4) $7 + \frac{1}{7} =$

5) Answer as a mixed number (if possible).
 $2 \frac{2}{3} + \frac{5}{4} =$

6) $3 + 4 + (46 + 1 \times 9 - 9) \times 1 =$

7) Find the volume (in cm).

8) What letter is at the coordinates: (0,2)

9) Use the visual model to solve:
 $\frac{4}{6} \times \frac{2}{4} =$
10) 53 \overline{9, 306}
Prepositional Phrases

Learn

Abraham Lincoln took office in 1861.

Which words tell when Lincoln became president?

A prepositional phrase can tell how, what kind, when, how much, or where. A prepositional phrase begins with a preposition, such as in, over, of, to, or by. It ends with a noun or pronoun that is the object of the preposition. Words between the preposition and the object of the preposition are also part of the prepositional phrase. A prepositional phrase can appear at the beginning, the middle, or the end of a sentence.

Practice

Underline each prepositional phrase. Circle the preposition that begins the phrase. There may be more than one phrase in each sentence.

1. Southern states seceded from the Union.
2. Confederate soldiers soon fired on Fort Sumter.
3. Southern forces defeated the Union army at the battle of Bull Run.
4. The outnumbered Confederate soldiers rallied around Stonewall Jackson.
5. Union troops trained in the streets of Washington, D.C.
6. General Robert E. Lee was a graduate of West Point.
7. Union forces suffered several defeats at the hands of General Lee.
8. In 1863, Lee invaded the state of Pennsylvania.
9. Union General Meade pushed Lee's army from the state.
10. Lincoln promoted Ulysses Grant to the rank of lieutenant general.
Write each sentence, adding one of the prepositional phrases in the box. Use a history book or encyclopedia if you need to.

Word Bank

- in January 1863
- with Lee's surrender
- at Appomattox, Virginia
- in New York City
- on the Gettysburg battlefield
- after Lincoln's death
- within a military fort
- at Ford's Theatre

11. The Civil War ended in 1865.

12. Lincoln gave a famous address.

13. Lincoln signed the Emancipation Proclamation.

14. Lee signed the surrender.

15. Lincoln was assassinated.

16. Andrew Johnson became president.

17. Jefferson Davis, the Confederate president, was imprisoned.

18. Grant is buried.
Solve each problem.

1) \[\frac{8.53 \times 3.60}{2} \times 87 \]
2) 114
3) 27 - 3.6 =

4) \[3 \div \frac{1}{4} = \]
5) Answer as a mixed number (if possible).
\[\frac{23}{4} - \frac{7}{2} = \]

6) \[(9 - 4 + 2 + 2 \times 4 - 2) - 1 = \]
7) Find the volume (in cm).

8) What letter is at the coordinates: (0,3)

9) Use the visual model to solve:
\[\frac{1}{6} \times \frac{2}{9} = \]
10)
53 | 1, 3 2 5
A Surprise on the Sea Floor

Article

A Surprise on the Sea Floor

PART 1

HONOLULU, Hawaii. Scientists have found seven new species of bamboo coral. The corals were discovered thousands of feet (hundreds of meters) below the ocean’s surface. This is an important find. Why? Deep-sea corals may help scientists uncover the mysteries of ecosystems. They may also tell about how ocean conditions affect sea life.

The corals were discovered among the northwestern Hawaiian Islands. They were found in a marine protected area. Scientists found the corals in 2007. They used an underwater science vessel. Scientists didn’t go looking for new species. Their original plan was to locate deep-sea coral beds. During the search, scientists collected samples of corals that looked unusual.

Scientists said that six of the seven species found off Hawaii may represent entirely new genera. (Genera is the word for more than one genus.) A genus is a main category in the classification of living things. It ranks above a species and below a family. A genus is made up of one or more related species. Since a genus is such a broad classification, discovering new genera is remarkable.

But there’s even more to the story than that. Richard Spinrad is a scientist. He said the discoveries are important. Why? Deep-sea corals support sea-floor ecosystems. Corals provide habitats for many marine species. The new coral species may lead scientists to discover more about the marine species that live among corals.

The coral species may also help scientists learn more about the ocean. How? Like trees, corals have growth rings. The rings provide clues about the corals’ age and growth. The more rings, the older the coral. The thickness of a growth ring depends on the conditions around the coral at the time. Like trees, corals grow more slowly when conditions around them are poor. Therefore, coral growth rings can provide views of how deep-ocean conditions change—for better or worse.

What might affect coral growth rings? According to Spinrad, the corals may be affected by changes in ocean chemistry, which happen when the oceans absorb carbon dioxide. Scientists believe that carbon-dioxide pollution is adding to climate change. As they continue to study the coral rings, they expect to learn more about how the corals have reacted to climate change in the past and how they will react in the future.

Scientists also discovered a large “coral graveyard.” They believe the corals died thousands of years ago. The species of coral in the graveyard had never been recorded in Hawaii before. Scientists do not know why the corals died.
There may be more discoveries to be made. Scientists are still studying the samples that they collected. They may find more new species. University of Hawaii scientist Christopher Kelley is one of two scientists who found the corals. He said the "potential for more discoveries is high."

The Associated Press contributed to this story.

PART 2

Dig Deeper

Discovering so many new species of deep-sea corals is remarkable! Luckily, these corals grow in the Papahanaumokuakea Marine National Monument. This is a marine protected area (MPA).

What is an MPA? It's a water region where human activity is limited in order to protect the environment. For example, fishing may be limited or banned within an MPA. That's because protecting fish helps to maintain biodiversity. Biodiversity is the number and variety of living things found on Earth or in an ecosystem. Biodiversity is important for healthy ecosystems.

Papahanaumokuakea is one of the largest marine conservation areas in the world. Its name comes from a Hawaiian story. The story states that Hawaii and its people came from Earth Mother and Sky Father. Their names combine to make Papahanaumokuakea. This reminds people that they are connected with the environment and must take care of it. That's especially important in Papahanaumokuakea. It is home to more than 7,000 marine species.

Scientists are still discovering the wonders of Papahanaumokuakea. In "A Surprise on the Sea Floor," you read about new species of deep-sea corals found there. Scientists say that these corals play an important role in deep-sea ecosystems. They're necessary to help maintain the ocean's biodiversity. And many of the thousands of marine species around the Hawaiian Islands are found nowhere else in the world. In fact, about 50 percent of the species living 100 to 300 feet (30.5 to 91.4 meters) below the ocean's surface are unique to the region. In the deep ocean, where the corals you read about are located, more than 90 percent of species are unique. If these species were to die out in this location, they would become extinct. Not only that, but the other organisms in the ecosystem would be affected.

That's a good reason to protect the waters around the islands.

The monument may be an MPA, but it's still connected to the rest of the world's oceans. That means it can be affected by outside forces. In 2012, scientists went to the monument. There, they collected nearly 50 metric tons of trash from the water. Much of the trash was fishing gear and plastics. Scientists say that these things threaten seals, turtles, and other species in the reef ecosystem.

This wasn't the first trash-collection effort. Scientists have been conducting these missions each year since 1996. So far, they have collected 700 metric tons of trash. The scientists plan to continue these cleanup efforts. They want to protect the many species in the MPA.

Dictionary

- **classification** *(noun)* a set or groups of like items
- **ecosystem** *(noun)* different living things that live together and need one another
- **marine protected area** *(noun)* a part of the sea, or land near the sea, where plants and wildlife are kept safe
- **organism** *(noun)* a living thing
potential (noun) something that might happen

unique (adjective) belonging to only one thing, place, or person
PART 1

Question 1

Main Idea

?

Details

- The corals were discovered thousands of feet below the ocean's surface.
- The corals were found among the northwestern Hawaiian Islands.
- The coral may tell about how ocean conditions affect sea life.

Based on the article, which best replaces the question mark in the diagram above?

A. Deep-sea corals may help scientists understand ecosystems.
B. Scientists have found seven new species of bamboo coral.
C. Deep-sea corals provide habitats for marine species.
D. Scientists were not looking for new species of coral.

Question 2

Which of these is an opinion?

A. Scientists found the corals in 2007 using an underwater science vessel.
B. The corals were discovered among the northwestern Hawaiian Islands.
C. The discovery of the new bamboo coral species is very important.
D. Corals have growth rings that provide clues about their age and growth.

Question 3
The article states
Scientists said that six of the seven species found off Hawaii may represent entirely new genera. Look at the sentence above and think about the article. Which would be the closest synonym for the word entirely?

A. Totally
B. Uneasily
C. Importantly
D. Slightly

Question 4
The article states:
The corals were discovered among the northwestern Hawaiian Islands. They were found in a marine protected area. Scientists found the corals in 2007. They used an underwater science vessel. Scientists did not go looking for new species. Their original plan was to locate deep-sea coral beds. During the search, they collected samples of corals that looked unusual.
The author's purpose for writing this paragraph was to __________.

A. Explain why the bamboo corals are important
B. Explain why Hawaii has bamboo corals
C. Explain how the bamboo corals were found
D. Explain how the scientists' plan was successful

Question 5
The news article says all of the following except __________.

A. Coral growth rings can show how deep-ocean conditions change.
B. Scientists found the corals in 2007.
C. Some marine animals eat bamboo coral.
D. The coral species may help scientists learn more about the ocean.

Question 6
Which statement from the article best supports the idea that scientists think the corals are important?

A. A genus is made up of one or more related species.
B. The corals were discovered thousands of feet (hundreds of meters) below the ocean's surface.
C. They were found in a marine protected area.
D. Deep-sea corals may help scientists uncover the mysteries of ecosystems.
Which is the closest synonym for the word classification?

A) Appearance
B) Arrangement
C) Advantage
D) Achievement

Question 8
How are coral species and trees similar?

A) They have roots that provide nutrition.
B) They have chemicals that fight off germs.
C) They have leaves that take in light.
D) They have growth rings that tell about their age.

PART 2

Question 9
Look at page 2 of the Article. Which two statements explain why it is especially important to protect the deep-ocean environment?

A) A large percentage of the species are found nowhere else in the world.
B) Changes to one species would affect the other organisms in the ecosystem.
C) This ecosystem can be affected more than others by outside forces.
D) Half of the species are unique to the waters around Hawaii.

Question 10
Part A
Look at page 2 of the Article. With which statement would the author agree?

A) The deep-sea corals live in a part of the ocean where far more than 50 percent of the species are unique.
B) The majority of the deep-sea corals are known to live about 100 feet (30.5 meters) below the ocean's surface.
C) The deep-sea corals play an important role in the Papahanaumokuakea Marine National Monument.
D) The deep-sea corals and other species that live near the ocean's surface may be threatened by trash one day.
Which piece of evidence from page 2 supports your answer to Part A?

A The deep-sea corals and thousands of other species that live around the Hawaiian Islands are affected by forces outside of the monument.
B The discovery of new species of corals played a large role in prompting officials to make the monument a marine protected area.
C The deep-sea corals found in the waters of the Papahanaumokuakea Marine National Monument are necessary to maintain the ocean's biodiversity.
D Nearly half of the species living below the ocean's surface in the Papahanaumokuakea Marine National Monument are unique to the area.
Achieve 3000 Article:

Step 1: Carefully read the article.
Step 2: Vocabulary - After reading the article, use the "dictionary" at the end of the article to complete the table below.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>A sentence including the vocabulary word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2 cont: Summarize the article

After you carefully read the article, go back to the beginning and reread while completing the organizer below.

What is the **topic** of the article? (a few words)

What is the **main idea** of the article? (a sentence telling the most important idea)

Why was this article written? (what does the author want us to know about the topic/main idea)
Solve each problem.

90.17 \times 7.06

2) 343 \times 89

3) 42.251 + 18.9 =

4) \frac{5}{7} =

5) Answer as a mixed number (if possible).
\frac{2}{4} + \frac{8}{5} =

6) (29 ÷ 1 + 3 + 7) \times 5 + 9 - 6 =

7) Find the volume (in cm).

8) What letter is at the coordinates: (1,2)

9) Use the visual model to solve:
\frac{1}{9} \times \frac{7}{8} =
10) \[\frac{86}{3}, 0 \ 9 \ 6 \]
Dependent and Independent Clauses

Learn

When Churchill became prime minister, he faced many challenges.

a.

b.

Which clause, a. or b., makes sense by itself?

An independent clause is a sentence and makes sense by itself. A dependent clause has a subject and a verb, but it does not make sense by itself. It needs—or is dependent on—an independent clause. A dependent clause often begins with a word such as although, because, if, as, or when.

Underline each dependent clause. Circle the word that begins each dependent clause.

1. Winston Churchill was born when his father entered Parliament.

2. As Winston grew to maturity, his grandfather served as viceroy of Ireland.

4. Churchill was not a promising student, although he excelled in English.

5. When he was 16, Churchill entered a historic British military college.

6. Although his assignment in the infantry kept him busy, Churchill always found time to read.

7. Churchill ran for a seat in Parliament in 1899 when he returned from India.

8. Although he lost the election, Churchill was not discouraged.

9. Because he had become a hero in the Boer War, Churchill's second run for office was successful.

10. If Churchill rose to speak, the other members of Parliament listened attentively.
Add an independent clause to either the beginning or the end of each dependent clause. Write the complete sentence.

11. because Churchill possessed great speaking ability

12. although his grades were poor

13. if Churchill had a spare moment

14. as Churchill grew up

15. when he went to war

19. even though his parents traveled often

16. by the time he was 12 years old

17. after he lost the election

18. whenever Churchill could find time

20. when the Boer War ended
Solve each problem.

1) \[5.13 \times 8.6 = \]

2) \[693 \times 73 = \]

3) \[75 - 24.1 = \]

4) \[3 + \frac{1}{3} = \]

5) Answer as a mixed number (if possible).
 \[\frac{1}{4} + \frac{3}{5} = \]

6) \[(9 \times 6 - 1 + 9) + 1 + 70 \div 2 = \]

7) Find the volume (in cm).

8) Write the coordinates of the Heart.

9) Use the visual model to solve:
 \[\frac{2}{3} \times \frac{2}{3} = \]

Answers

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

www.CommonCoreSheets.com
10) \[
53 \overline{7, 560}
\]
Bees: Don't Buzz Off!

Article

PART 1

MERCED, California. This article originally posted on August 30, 2010. At that time, scientists knew very little about what was causing the bees to die off. After you finish reading today's article, be sure to click on the UPDATE icon to find out what scientists have discovered since then.

Beekeeper Zac Browning raises his hives in Idaho. He then ships them to California to pollinate the blossoming almond trees. But in 2010, when Browning checked on the hives, he was shocked. Hundreds of the hives were empty. The worker honeybees had abandoned the hives and disappeared. They just flew off to die. Beekeepers first began reporting this behavior in 2006. The winter of 2009 to 2010 was a period of particularly bad weather. During that time, the die-offs got even worse. As a result, there just weren't enough bees to pollinate crops and make honey.

"There were a lot of beekeepers scrambling to fill their orders. And that suggests that [the number of deaths was] high," said Dennis vanEngelsdorp. He is a bee scientist from Penn State University. VanEngelsdorp worked on a government survey to determine the degree of the problem.

Scientists are concerned. Honeybees play an important role in our food supply. About one-third of the human diet comes from plants that are pollinated by honeybees. The bees pollinate more than 100 crops. These include fruits, vegetables, nuts, and seeds. Without pollination, the crops would not develop properly. And humans would have much less food.

In an attempt to save these insects, officials are stepping up their efforts to pinpoint the causes of the bees' deaths. In 2010, they concentrated on the effects of pesticides.

As it turns out, honeybees' pollen and hives are full of pesticides. In March 2010, the scientific journal PLOS One printed a study on this subject. It found that about three out of five pollen and wax samples from 23 states contained at least one systemic pesticide. (What are systemic pesticides? They are chemicals designed to spread throughout all parts of a plant.) The study involved 887 wax, pollen, bee, and hive samples. In all, 121 different types of pesticides were found.

None of the chemical levels were high enough to kill bees on their own, said Chris Mullen. Mullen was the study's author. However, scientists are concerned about the effects of mixing many different kinds of pesticides.

The government's Environmental Protection Agency (EPA) is responsible for taking harmful pesticides off the market. EPA officials said they are aware of problems involving pesticides and bees. They added that the agency is "very seriously concerned." Still, officials insist that available pesticides cannot hurt honeybees.
Despite this, environmentalists aren't pleased. They say they don't think the EPA is doing enough to study the effects of newer pesticides. These environmentalists point to an event involving Bayer Crop Science. In 2006, that company asked the EPA to approve the sale of a new pesticide. The EPA reviewed Bayer's studies of the pesticide's effects on bees. Then, the agency gave the company approval to sell the pesticide starting in 2008. However, the EPA said the pesticide must carry a warning label. This label said that the pesticide could be deadly to honeybee larvae. An environmental group took the EPA to court. The group argued that the label didn't give the public enough information. A judge agreed. Sale of the pesticide was banned.

Even as actions are being taken on pesticides, there's still one problem. Pesticides may not be the only reason the bees are dying. Scientists believe that the die-off has a combination of causes in addition to pesticides. Parasites, viruses, bacteria, and poor food supply may all play a role.

All this makes life difficult for beekeepers like Browning. When his bees died, he lost $1 million in business.

"It's just hard to get past this," Browning said. He said he would rebuild his hives. However, he added, "I have plenty of friends who aren't going to make it."

The Associated Press contributed to this story.

PART 2

Dig Deeper

Have you ever watched a honeybee collect nectar from a flower? Nectar is a sweet, sugary liquid. It is found at the bottom of the flower. The bee crawls around in the flower. It reaches down for the nectar. As it does, it rubs against the anthers. It picks up pollen grains. The bee then travels to another flower. Some of that pollen rubs off onto the pistil of the second flower.

![Credit: Mr. Green/Shutterstock](https://via.placeholder.com/150)

An animal that **pollinates** a flower is called a pollinator. Bees and other insects are some of the most important pollinators. Bees need nectar for food. They gather pollen to feed their young. Bees recognize the colors, smells, and shapes of flowers. Bees pollinate thousands of species of plants. Sunflowers and lavender are examples of plants that bees pollinate. As you read in the news article on page 1, pollinators are important to our food supply.

Many kinds of flowering plants reproduce using interactions between plants and animals. The plants are a source of food for the animal. The animals help transport pollen and seeds. As they eat, animals move pollen from flower to flower. They move seeds from place to place.

Angiosperms and their pollinators work together in highly specialized ways. Here's an example. Sometimes the nectar is found in a tube-shaped flower. Only certain animals can pollinate those flowers. A hummingbird has a long, thin beak that can reach the nectar. Some flowers bloom at night. These flowers use moths and bats as pollinators. Most night-
blooming flowers are pale. They can be seen at night. Night-blooming flowers may give off strong smells. This is another way they can draw animal pollinators.

There is an advantage to animal pollination. It brings pollen to where it is needed most. What will happen to pollen gathered by a bee? It has a much better chance of being brought to another flower. Compare that to pollen grains that are spread by the wind. They are blown in all directions. Each grain has only a small chance of landing on another flower. Wind-pollinated plants make a lot more pollen than animal-pollinated plants.

Dictionary

agency (noun)
a group in the government that has a certain job to do

angiosperm (noun)
a plant that has flowers and makes seeds inside of the fruit

approve (verb)
to say that something is OK

flower (noun)
the reproductive structure of an angiosperm; it has male and female parts

parasite (noun)
plant or animal that lives in or on another living thing

pesticide (noun)
a chemical used to kill unwanted plants, insects, or rodents

pollinate (verb)
to carry a powdery material from flower to flower so that the plants can make new plants; usually, this is done by wind or insects
PART 1

Question 1

Main Idea

?

Details

The bees pollinate more than 100 crops that include fruits, vegetables, nuts, and seeds.
Without pollination, the crops would not develop properly.
About one-third of our food comes from plants that are pollinated by honeybees.

Based on the article, which best replaces the question mark in the diagram above?

A) Honeybees have been dying off in a strange way since 2006.
B) Scientists found that the pollen and hives of honeybees are full of pesticides.
C) Scientists believe that honeybees' deaths are not only because of pesticides.
D) Honeybees are very important to the human food supply.

Question 2

Think about the honeybees. Which of these events must have happened first?

This question asks about when events happened. It does not ask where in the article the events appear. Look back at the article for clues, such as dates.

A) A judge banned the sale of a new pesticide made by Bayer Crop Science.
B) The winter of 2009 to 2010 was particularly bad, and there were many more bee deaths.
C) The EPA approved the sale of a new pesticide developed by Bayer Crop Science.
D) Beekeepers began reporting that bees were abandoning their hives and disappearing.

Question 3
Which is the closest synonym for the word approve?

A. Allow
B. Design
C. Stop
D. Cancel

Question 4
Suppose Ester wants to find out more about how honeybees pollinate crops. She would get the most information by:

A. In a newspaper story about a huge beehive
B. In a magazine article about American farmland
C. In a conversation with a beekeeper
D. In a book about healthy fruits and vegetables

Question 5
The article states:

- Scientists are concerned. Honeybees play an important role in our food supply. About one-third of the human diet comes from plants that are pollinated by honeybees. The bees pollinate more than 100 crops. These include fruits, vegetables, nuts, and seeds. Without pollination, the crops would not develop properly. And humans would have much less food.

Which would be the closest synonym for the word concerned?

A. Worried
B. Intelligent
C. Angry
D. Serious

Question 6
According to the article, why did the honeybee deaths get worse between 2009 and 2010?

A. Scientists did a study and found pesticides in bee pollen.
B. The EPA approved a new pesticide made by Bayer Crop Science.
C. There was particularly bad weather that winter.
D. Scientists found out that beehives had bacteria and parasites.
Based on the article, which is most likely to happen?

A) Government leaders will ban the use of all chemicals on crops.
B) Beekeepers will continue to earn more money every year.
C) Environmentalists will help pollinate more than 100 crops.
D) Scientists will continue to study why bees are dying off.

Question 8

The news article says all of the following except ________.

A) The EPA gave Bayer Crop Science approval to sell a new pesticide starting in 2008.
B) Scientists believe that pesticides are the only reason why honeybees are dying out.
C) Systemic pesticides have chemicals designed to spread throughout all parts of a plant.
D) Beekeeper Zac Browning said that when his bees died, he lost $1 million in business.
Achieve 3000 Article:

Step 1: Carefully read the article.
Step 2: Vocabulary - After reading the article, use the "dictionary" at the end of the article to complete the table below.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>A sentence including the vocabulary word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2 cont: Summarize the article

After you carefully read the article, go back to the beginning and reread while completing the organizer below.

<table>
<thead>
<tr>
<th>What is the topic of the article? (a few words)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>What is the main idea of the article? (a sentence telling the most important idea)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Why was this article written? (what does the author want us to know about the topic/main idea)</th>
</tr>
</thead>
</table>
Solve each problem.

1) 26.65 x 8.60
2) 556 x 14
3) 4 + 2.7 =

4) 3 ÷ 1/5 =

5) Answer as a mixed number (if possible).
 \[\frac{1}{2} + \frac{3}{4} = \]

6) \((9 \times 4 + 87 ÷ 1 + 9 + 9 - 4) =

7) Find the volume (in cm).

8) What letter is at the coordinates: (2,4)

9) Use the visual model to solve:
 \[\frac{4}{5} \times \frac{1}{3} = \]
10) \[
\begin{array}{c}
95 \div 2, 565
\end{array}
\]
Avoiding Fragments, Run-ons, Comma Splices

Learn

_______ Churchill painted under a different name.

_______ He won a Nobel prize for literature his writing earned him money.

_______ gradually slipped from view.

_______ Churchill warned the world about Germany, his warnings were ignored.

Write S by the correct sentence. Write RO by the sentence that needs a comma and a conjunction. Write F by the sentence that is not a complete thought. Write CS by the sentence that has a comma but needs a conjunction.

A fragment does not tell a complete thought. A run-on sentence is two sentences that are run together without a comma and a conjunction. A comma splice is two sentences that are joined only by a comma but are missing a conjunction.

Practice

Write F by each sentence fragment. Write RO by each run-on sentence. Write CS by each sentence that has a comma splice. Write S by each complete sentence.

_______ 1. Prime Minister Chamberlain was forced to resign Churchill succeeded him.

_______ 2. Churchill addressed the British people, but he said he offered only “blood, toil, tears, and sweat.”

_______ 3. Churchill feared the Communist threat, he nevertheless worked with Soviet Premier Stalin.

_______ 4. Churchill's party lost the election in 1945, and Churchill was forced to resign as prime minister.

_______ 5. Churchill never lost his powerful speaking ability one of his best-known speeches was given in Fulton, Missouri.

_______ 6. Coined the term “Iron Curtain.”

Copyright © Zaner-Bloser, Inc.
Rewrite each of these fragments, run-on sentences, and comma splices correctly.

7. rose to prominence during World War II

8. Britain and the Soviet Union declared war on Germany, after Pearl Harbor the United States also joined the war.

10. The Cold War refers to a time of tension, war was never declared.

11. Setbacks rarely discouraged Churchill he always seemed to bounce back.

12. Churchill possessed many talents, none were more important than his leadership in a crisis.

13. Churchill called Nazi Germany a monstrous tyranny, he vowed to defeat it.

14. formed a “V for Victory.”
Math Review 7

Solve each problem.

1) \[38.75 \times 5.20 \]

2) \[311 \times 41 \]

3) \[45 - 29.29 = \]

4) \[3 + \frac{1}{7} = \]

5) Answer as a mixed number (if possible).
 \[\frac{11}{2} + 2 \frac{2}{3} = \]

6) \[(8 \times 62 + 8 \times 9 - 5) \times 3 - 1 = \]

7) Find the volume (in cm).

8) Write the coordinates of the Cross.

9) Use the visual model to solve:
 \[\frac{3}{4} \times \frac{2}{4} = \]

Answers

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Math

www.CommonCoreSheets.com
10) \[
92 \overline{\underline{9, 801}}
\]
A Lake on Mars

NEW YORK, New York (Achieve3000, September 7, 2018). In July 2018, scientists reported that they had made a thrilling discovery on Mars. No, they didn’t discover aliens living there. But what the scientists did discover has increased the chances that there’s some sort of life on the Red Planet.

Scientists spotted what appears to be a huge lake of liquid water. Water is needed for life as we know it. So researchers have long tried to prove that the life-allowing liquid has been present on Mars all along. Now, they’re thrilled to have spotted an entire reservoir of water. It’s in an area close to the planet’s south pole.

“If these researchers are right, this is the first time we’ve found evidence of a large water body on Mars,” said Cassie Stuurman. She’s a scientist at the University of Texas in the U.S.

To detect the lake, Italian researchers studied radar signals. These were collected over three years by the Mars Express spacecraft. Mars Express belongs to the European Space Agency. How deep is the reservoir? Scientists can’t tell. But their study showed that it’s about 12 miles (20 kilometers) wide. It lies below almost a mile (1.5 kilometers) of solid ice.

The researchers spent at least two years examining the evidence. They wanted to make sure they’d detected liquid water, not ice. (Ice has already been discovered on Mars.)

"I really have no other explanation [than there’s water below]," said the study’s lead author Roberto Orosei.

Scott Hubbard, who was the head of a U.S. Mars program, said the discovery is very exciting.

"[For our Mars program, we always said], ‘follow the water.’ That was the one phrase that captured everything," Hubbard said. "So this discovery, if it stands, is just thrilling because it’s the [result] of that [idea]."

But how could this water not have frozen? After all, Mars is a cold planet. It has an average temperature of about 80 degrees below 0 Fahrenheit (62 degrees below 0 Celsius).

"Mars is very cold. But the water might have been kept from freezing by dissolved salts. It’s the same as when you put salt on a road," said Kirsten Siebach, a scientist at Rice University in the U.S. "This water would be extremely cold, right at the point where it’s about to freeze. And it would be salty. Those are not [the best] conditions for life to form."

Still, it wouldn’t be impossible, the scientist explained. There are microbes on Earth that have been able to adapt to those kinds of environments, she said.
Study author Orosei is hopeful. He says the discovery makes him want to think that this is the first place where life could be present on Mars. Orosei also suspects that Earth's planetary neighbor may contain other hidden bodies of water.

One thing is clear. In the search for life on Mars, researchers will likely continue to "follow the water."

The Associated Press contributed to this story.

Dictionary

- **detect** *(verb)* to discover; to see something
- **dissolve** *(verb)* to mix with a liquid
- **microbe** *(noun)* a tiny organism that can be seen only with a microscope
- **radar signals** *(noun)* radio waves that are used to find objects or gather information
- **reservoir** *(noun)* a place where a large amount of water has collected
PART 1

Question 1

Main Idea

Now, there's a greater chance of finding life on Mars.

Scientists are thrilled.

Based on the Article, which best replaces the question mark in the diagram above?

There is a large rectangle with a question mark in it. Above the rectangle, it says "Main Idea of the Article." Under the rectangle, there are two smaller boxes with arrows pointing up to the rectangle. Each small box includes a detail from the Article. The box on the left says "Now, there's a greater chance of finding life on Mars." The box on the right says "Scientists are thrilled."

A. Scientists have not seen any aliens living on Mars yet.
B. Researchers have found that the temperatures on Mars are not too hot.
C. Researchers say there may be various salts on Mars.
D. Scientists believe they have discovered a lake of liquid water on Mars.

Question 2

What is a cause and effect relationship that takes place in the Article?

A. Because water is so important to life as we know it, scientists searching for some sort of life on Mars use the phrase "follow the water."
B. Because water is needed for life as we know it, researchers added salts to a huge lake on Mars to keep the water from freezing.
C. Because Mars is such a cold planet, it is unlikely that researchers will continue to study it.
D. Because Mars is so cold, it would be impossible for microbes to adapt to the planet's environment.
Which is the closest **synonym** for the word *detect*, as it is used in the Article?

A) Refill
B) Spot
C) Ignore
D) Photograph

Question 4

This Article would help a student write an essay on __________.

A) Microbes that can live in very cold, salty environments
B) The search for signs of life on other planets
C) How radar signals work
D) Why salt can be used to prevent water from freezing

Question 5

Based on the Article, the reader can tell that __________.

A) Roberto Orosei probably thinks scientists should study the newly found lake, as well as other areas under Mars' surface.
B) Roberto Orosei probably feels the phrase "follow the water" is not particularly useful.
C) Scott Hubbard probably doesn't think it's possible for life to ever have formed on Mars because of its temperatures.
D) Scott Hubbard probably feels scientists spent far too much time studying the radar signals.

Question 6

The Article states:

The researchers spent at least two years examining the evidence. They wanted to make sure they'd detected liquid water, not ice. (Ice has already been discovered on Mars.)

Which would be the closest **synonym** for the word *evidence*, as it is used above?

A) Pollution
B) Program
C) Problem
D) Proof

Question 7
The author probably wrote this Article in order to ________:

A. Provide a glimpse into Scott Hubbard's career as head of a U.S. Mars program
B. Convince the reader that the search for life on Mars is not worth the time and money
C. Explain to the reader how researchers use radar signals to study planets
D. Describe a discovery of water on Mars that has scientists hopeful about finding life on the planet

Question 8
Which passage from the Article best supports the notion that there's a real chance of discovering life on Mars?

A. It has an average temperature of about 80 degrees below 0 Fahrenheit (62 degrees below 0 Celsius).
B. Still, it wouldn't be impossible, the scientist explained. There are microbes on Earth that have been able to adapt to those kinds of environments, she said.
C. The researchers spent at least two years examining the evidence.
D. "This water would be extremely cold, right at the point where it's about to freeze. And it would be salty. Those are not [the best] conditions for life to form."
Achieve 3000 Article:

Step 1: Carefully read the article.

Step 2: Vocabulary - After reading the article, use the "dictionary" at the end of the article to complete the table below.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>A sentence including the vocabulary word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2 cont: Summarize the article

After you carefully read the article, go back to the beginning and reread while completing the organizer below.

What is the **topic** of the article? (a few words)

What is the **main idea** of the article? (a sentence telling the most important idea)

Why was this article written? (what does the author want us to know about the topic/main idea)
Solve each problem.

1) \[
\begin{array}{c}
8.48 \\
\times 8.68
\end{array}
\]

2) \[
\begin{array}{c}
433 \\
\times 14
\end{array}
\]

3) \[
57 - 53.19 =
\]

4) \[
8 \div \frac{1}{2} =
\]

5) Answer as a mixed number (if possible).
\[
\frac{29}{5} - \frac{9}{4} =
\]

6) \[
6 + (9 \times 3 \times 13) \times 8 + 9 =
\]

7) Find the volume (in cm).

8) What letter is at the coordinates: (2,3)

9) Use the visual model to solve:
\[
\frac{1}{3} \times \frac{3}{7} =
\]
10) \[\frac{4, 125}{55} \]
Adjectives

Learn

The U.S. Fish & Wildlife Service keeps a list of threatened and endangered animals.

Circle two words that describe the animals on the list.

Adjectives describe nouns and pronouns. Some adjectives tell what kind. Others, like many and six, tell how many. The adjectives this, that, these, and those tell which one. These are called demonstrative adjectives. The articles a, an, and the are also adjectives.

Practice

Write what kind, how many, or which one to tell what the boldfaced adjective tells about the noun.

1. There are 63 species of mammals on the list of endangered animals.

2. Others are considered threatened animals.

3. Worldwide, the list has an even higher number.

4. There are few plans to save these species.

5. Large mammals are not the only threatened species.

6. The list includes colorful birds and tiny turtles.

7. An endangered species has so few living members that it might disappear altogether.

8. The bald eagle, our national symbol, was once a rarity.

9. After years of careful protection, the number of eagles began to increase.

10. The survival of the eagle was cause for great celebration.

11. The Aleutian Canada goose has also avoided extinction.

12. This bird was taken off the list in 2001.
Select an adjective from the Word Bank to complete each sentence. The adjective should give the information shown in parentheses. You may use a word more than once, and not every word will be used.

Word Bank

- whooping
- tallest
- long
- usual
- several
- threatened
- many
- shallow
- endangered
- numerous
- familiar
- beautiful
- old
- up-to-date

13. The whooping crane is the ___________________ American bird. (what kind)

14. Whooping cranes have ___________________ necks and legs. (what kind)

15. ___________________ birds have snow-white feathers with black wing tips. (which ones)

16. There are many ___________________ species of birds on our continent. (what kind)

17. Whooping cranes have been on the ___________________ species list for many years. (what kind)

18. Over the last ___________________ years, however, the whooping cranes have been recovering. (how many)

19. ___________________ cranes were dying out because their homes were being destroyed. (which ones)

20. The ___________________ habitats of whooping cranes are wetlands and grasslands. (what kind)

21. In the wetlands, the cranes sleep standing up in ___________________ water. (what kind)

22. Now ___________________ efforts have been made to save the whooping cranes. (how many)

23. Each year, some of these birds have been reintroduced into their ___________________ habitat. (what kind)

24. The U.S. Fish & Wildlife Service asks for ___________________ reports from anyone seeing these birds during their migration periods. (what kind)
Solve each problem.

1) \[40.0 \times 6.0 \]

2) \[911 \times 96 \]

3) \[51 - 8.29 = \]

4) \[8 \div \frac{1}{2} = \]

5) Answer as a mixed number (if possible).
 \[3 \frac{1}{3} - 2 \frac{1}{2} = \]

6) \[1 + (7 + 7 + 9 - 7) - 2 - 2 = \]

7) Find the volume (in cm).

8) What letter is at the coordinates: (3,5)

9) Use the visual model to solve:
 \[\frac{1}{2} \times \frac{3}{4} = \]
10) \[\frac{5}{742} \]
New Life at Yellowstone

PART 1

MAMMOTH, Wyoming. In the summer of 1988, lightning sparked wildfires that burned 36 percent of Yellowstone National Park. The flames scorched huge chunks of pristine forest. Yet, the fires were not the long-term ecological disaster that many feared at the time. Twenty years later, officials are seeing new life in Yellowstone Park. This is leading them to decide that they handled the fire the right way.

Officials weren't always so sure. The damage from the 1988 wildfire led experts to question how to best deal with wildfires. For nearly a century, Yellowstone rangers had put out fires as quickly as possible. Then, in 1972, ecologists stated that it was better to allow lightning-sparked wildfires to burn as long as they did not threaten lives or park buildings. They said that fire cleared out underbrush and sparked new plant growth. In this way, fires were nature's way of producing healthy forests. Yellowstone began allowing fires to burn. This worked well—until 1988. That spring had been damp. Therefore, when wildfires started in May, allowing them to burn seemed safe enough. Then, in June, it became clear that no rain was coming. There was only lightning, which sparked more fires. The drought dried out the leaves. This helped the fires to spread out of control.

"Every single day you couldn't believe that you'd wake up and there was more fire, new fires started," said Joan Anzelmo. She worked at Yellowstone in 1988.

That summer, several events brought the park to the nation's attention. In late July, officials had to ask 4,000 tourists to leave the park because of the wildfires. Then, on August 20, 80-mile-an-hour (120-kilometer-an-hour) winds fanned the flames, and the fires doubled in size. More than 25,000 firefighters battled the blazes at a cost of $120 million. The fires made national headlines.

No heavy rain came until September. Even then, it took until October 17 to put out all the fires. Overall, the fires burned 1,875 square miles (4,856 square kilometers) in and around the park. They destroyed 67 buildings in Yellowstone. There was more than $3 million in property damage.

The fires forced U.S. officials to re-examine the firefighting policy. Some people had heard about the so-called "let it burn" rule and misunderstood it. They thought it meant that every fire was allowed to spread out of control. Actually, park officials say that there was never a "let it burn" rule. They carefully considered each time they chose to allow a lightning-sparked fire to burn.

After careful study, U.S. officials decided to allow fires to burn, but under tighter controls. They also developed new strategies to battle fires. Since 1988, firefighters have faced increasingly larger fires. In 1988, about 5 million acres (20 billion square meters) of the nation's forests burned. In 2007, about 9 million acres (36 billion square meters) burned. Why are many of today's wildfires larger? Wildfire experts say that there is a build-up of old trees and underbrush resulting from drought. Past policies of stopping fires added to the problem. So did insect damage to trees.
No one was sure what the long-term effect of the 1988 wildfires would be. However, some experts predicted that the blazes would benefit the forest over time. It took 20 years for new life to appear, but it did appear. Signs of life are sprouting in the very places that were burned in 1988. New trees have taken root among the burnt logs that still lay on the ground. Far from destroying the park, the fires brought new life. They cleared out the forest canopies and allowed new plants to bloom.

"You look around, there's wildlife, there's birds, everything's fine," said park visitor Tracey Florio. "Actually, it's a lot greener now. Hopefully, we learned from that. It's OK to let nature do what it needs to do—clean house."

The Associated Press contributed to this story.

PART 2

Dig Deeper

Yellowstone National Park officials knew the benefits of letting the wildfire burn, as long as it didn't threaten lives. They knew that wildfires can improve the health of an ecosystem. They also knew that ecosystems change over time in a process called succession. Ecologists recognize two types of succession: primary and secondary.

Primary succession occurs in areas that have not been previously occupied by a community of organisms. Think of bare rock exposed by retreating glaciers or cooled volcanic lava. A lava flow may cover an area. A glacier may retreat. These can cause an empty and barren environment. But then, plants and other pioneer species (https://portal.achieve3000.com/lesson/?lid=124&plang=0) will move into areas like these. They bring the areas back to life.

When does secondary succession happen? It's after a major disturbance to the biological community in a stable ecosystem. Despite the disturbance, the soil remains. The community may be disturbed by a natural event. This could be a fire, hurricane, or flood. The community could also be disturbed by human activity. For example, a cleared forest can lead to secondary succession. Abandoned farmland can, too. How long does it take for ecological healing to take place after a disturbance? It can take from 50 to 200 years. Study the diagram. It shows the stages in secondary succession.

Credit: Houghton Mifflin Company

Deciduous trees grow in the forest biome. So, secondary succession here will result in trees.

All types of ecosystems go through succession. The pattern is always the same. First, a community of producers is set up. The producers are followed by decomposers and consumers. Then, there are more producers. They are followed by even more decomposers and consumers. Over time, a stable biological community develops.

Pioneer species play one of two roles in an ecological succession. They can help other species to grow. They can also keep other species from becoming established. For example, trees such as alders have nitrogen-fixing bacteria on their roots. The bacteria make the nutrient content of the soil better. They allow other tree seedlings to grow. Pioneering species can also stabilize the soil and shade the soil surface. They also add nutrients to the soil when they die and decay. But other plant species may release chemicals that keep other plants from taking root. A new species might also outcompete other species. It may use up resources. It may resist disease better. These kinds of interactions between living things help to determine succession in an ecosystem.
Dictionary

canopy (noun) the branches and leaves that spread out at the top of a group of trees, forming a type of roof

ecological (adjective) having to do with the environment

pioneer species (noun) the first species to move into a lifeless environment

policy (noun) a way of doing something

pristine (adjective) unspoiled

scorch (verb) to burn

succession (noun) a natural process that involves a gradual change in communities; plant and animal communities that live in an area will all change
PART 1

Question 1

Causes

Experts say that there is a build-up of old trees and underbrush.

Experts say that insects have caused damage to trees.

Effect

?

Based on the article, which best replaces the question mark in the box above?

A) Officials are pleased with the new growth in one national park.
B) A 1988 wildfire doubled in size and made national headlines.
C) Ecologists decided to allow some lightning-sparked wildfires to burn.
D) Today's wildfires are larger than they were in the past.

Question 2

Let's suppose that this article could have a different title. The best one would be __________.

A) Blaze Proves To Benefit Forests in Yellowstone
B) Officials Want To Let Fires Burn in Yellowstone
C) Blaze Destroys 67 Buildings in Yellowstone
D) More Lightning Storms Reported in Yellowstone

Question 3
Which question is not answered by the article?

A. What percent of the park was burned in the 1988 fires?
B. How many people visited Yellowstone National Park in 1988?
C. How many firefighters battled the 1988 blazes in the park?
D. What brought Yellowstone to the nation's attention in 1988?

Question 4
Which of these happened before ecologists stated in 1972 that it was better to allow wildfires to burn?

A. Yellowstone rangers put out wildfires as quickly as possible.
B. A series of fire-related events brought the park to national attention.
C. Fires burned 1,875 square miles (4,856 square kilometers) in and around Yellowstone.
D. The government put a freeze on allowing fires in national parks.

Question 5
Which is the closest synonym for the word pristine?

A. Clumsy
B. Peculiar
C. Casual
D. Perfect

Question 6
Which best summarizes the article?

A. Drought once dried out trees in Yellowstone and helped fires spread out of control.
B. Officials in Yellowstone re-examined a policy that allowed wildfires in the park.
C. New life has appeared in Yellowstone 20 years after wildfires scorched the park.
D. Wildfires burned 1,875 square miles (4,856 square kilometers) in and around Yellowstone Park in 1988.

Question 7
The article states:

The fires forced U.S. officials to re-examine the firefighting policy. Some people had heard about the so-called "let it burn" rule and misunderstood it. They thought it meant that every fire was allowed to spread out of control. Actually, park officials say that there was never a "let it burn" rule. They carefully considered each time they chose to allow a lightning-sparked fire to burn.

The author uses this paragraph mostly to help the reader understand that ________.

A) The park's firefighting policy was not clear to some people.
B) Park officials do not know the long-term effects of wildfires.
C) Park officials wanted to let every wildfire burn in the park.
D) The park's firefighting policy made national headlines at one time.

Question 8

The article states:

No one was sure what the long-term effect of the 1988 wildfires would be. However, some experts predicted that the blazes would benefit the forest over time. It took 20 years for new life to appear, but it did appear.

Which would be the closest antonym for the word benefit?

A) Hover
B) Harm
C) Hustle
D) Haul
Achieve 3000 Article:

Step 1: Carefully read the article.

Step 2: Vocabulary - After reading the article, use the "dictionary" at the end of the article to complete the table below.

<table>
<thead>
<tr>
<th>Word</th>
<th>Definition</th>
<th>A sentence including the vocabulary word</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 2 cont: Summarize the article

After you carefully read the article, go back to the beginning and reread while completing the organizer below.

<table>
<thead>
<tr>
<th>What is the topic of the article? (a few words)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What is the main idea of the article? (a sentence telling the most important idea)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Why was this article written? (what does the author want us to know about the topic/main idea)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Solve each problem.

1) \[94.30 \times 4.2 \]

2) \[587 \times 90 \]

3) \[17 - 12.99 = \]

4) \[9 \div \frac{1}{8} = \]

5) \[\frac{11}{3} - \frac{7}{5} = \]

6) \[21 \div (8 \times 2 \times 2 - 6 - 5) + 1 = \]

7) Find the volume (in cm).

8) Write the coordinates of the Lightning.

9) Use the visual model to solve:

\[\frac{1}{3} \times \frac{2}{7} = \]
10) \[60 \div 6, 000 \]
Adverbs

Learn

Alligators *usually* move slowly. An alligator’s jaw and tail are *very* strong.

Which boldfaced word tells how alligators move? __________________

Which boldfaced word tells when alligators move? __________________

Which boldfaced word describes an adjective? __________________

Adverbs describe verbs or adjectives. They tell how, when, where, or to what extent (how much). Many adverbs end in -ly. Other common adverbs are: fast, very, often, again, sometimes, soon, only, however, too, later, first, then, far, and now. An adverb can describe another adverb.

Practice

Underline each adverb in the sentences below.

1. Alligators live comfortably in the warm waters of southeastern United States.
2. The American alligator has a large, slightly rounded body.
3. Their short, rather thick legs are not suited to swimming.
4. Their powerful tails allow them to glide gracefully through water.
5. As a result, alligators can move quickly and quietly.
6. These reptiles have sharply pointed teeth and very strong jaws.
7. Alligators eat primarily fish, turtles, and snails.
8. In the past, hunters often killed alligators for their valuable skin.
9. The loss of many wetlands nearly caused alligators to disappear.
10. The government then decided to place the American alligator on the endangered species list.
Apply

Add an adverb to describe the boldfaced word in each sentence. You may use words from the Word Bank if you wish.

Word Bank

<table>
<thead>
<tr>
<th>easily</th>
<th>closely</th>
<th>more</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>greatly</td>
<td>viciously</td>
<td>definitely</td>
<td>tightly</td>
</tr>
<tr>
<td>clearly</td>
<td>constantly</td>
<td>brightly</td>
<td></td>
</tr>
</tbody>
</table>

11. If an alligator closes its jaws __________, it is difficult to open them.

12. Alligators and crocodiles are alike in many ways but differ __________ in other ways.

13. If you look __________ at a crocodile’s mouth, you will notice something interesting.

14. The crocodile’s fourth tooth can be __________ seen.

15. If you see this tooth, you are __________ looking at a crocodile, not an alligator.

16. The alligator moves __________ slowly than a crocodile because it is heavier.

17. Crocodiles have been known to attack large animals and humans __________.

18. The eyes of both alligators and crocodiles are placed __________ on their heads.

19. They watch __________ for prey while their bodies are hidden in the water.

20. A crocodile can __________ live to be 60 years old.

21. Crocodile moms sometimes help their babies hatch by __________ cracking the eggs.

22. Alligator babies have __________ colored stripes and patches, which disappear as they get older.
Across
2 yard : ________ : castle : wall
4 policeman : station : secretary : ________
6 ________ : noisy : lightning : bright
8 gravy : potatoes : ________ : salad

Down
1 choir : ________ : band : drummer
3 ________ : mashed : eggs : scrambled
5 barbecue : patio : oven : ________
7 rows : ________ : toes : tows
Across

1. kayak : boat : cabin : ________
2. Triceratops : ________ : barracuda : fish
3. yarn : knitting : thread : ________
4. ________ : bee : web : spider

Down

1. ant : ________ : fish : school
2. ranch : cowboy : ________ : clown
3. ________ : fourteen : nine : eighteen
4. newt : ________ : mole : underground
Across
1. horse : hoof :: eagle ::
2. :: bear :: calico : cat
3. call : phone :: :: camera
4. :: stage : chemist : laboratory

Down
1. coat : long :: :: short
2. sailboat : wind :: automobile ::
3. wrench :: :: yo-yo : toy
4. rabbit :: :: giraffe : neck
Across
2 goat : horns : deer : ______
3 woman : necklace : dog : ______
5 stove : cook : ______ : bake
7 spit : ______ : tears : eyes

Down
1 hit : baseball : ______ : basketball
2 cook : ______ : baby : bib
4 break : brake : ______ : seem
6 flower : ______ : tree : trunk
Across
2 mouth : lip : eye : __________
4 pickles : jar : eggs : __________
5 crab : __________ : jellyfish : sting
7 add : subtract : __________ : difference

Down
1 soggy : wet : soiled : __________
3 lick : __________ : kiss : lips
4 swift : fast : __________ : pick
6 __________ : easy : difficult : hard
Across
3 train : _______ :: bus : bus stop
5 travel : _______ :: camp : tent
6 wool : _______ :: feathers : goose
7 swim : bathing suit :: sleep : _______

Down
1 shin : calf :: chest : _______
2 _______ : face :: knee : leg
3 tired : yawn :: cold : _______
4 basketball : court :: _______ : diamond
Across
1. hen : rooster :: cow : ________
2. right : left :: ________ : backward
3. judge : ________ :: doctor : hospital
4. wind : blows :: sun : ________

Down
1. ________ : eggs :: peanut butter : jelly
2. right : ________ :: by : buy
3. autumn : season :: March : ________
4. pea : pod :: ________ : cob
Across
1. swim : ________ : break : broke
2. top : ________ : buy : sell
3. rest : relax : complete : ________
4. jelly : toast : syrup : ________

Down
1. faucet : water : chimney : ________
2. stop : ________ : nips : spin
3. rain : water : hail : ________
4. ________ : pound : saw : cut
Across
2 love : _______ : filthy : dirty
4 _______ : radio : watch : television
6 toothpaste : _______ : perfume : bottle
7 t-shirt : jeans : blouse : _______

Down
1 barber : hair : _______ : teeth
3 deer : _______ : goat : kid
5 ring : finger : goggles : _______
8 cranky : grouchy : _______ : toss
Across

2 bird : nest :: _________ : dam
3 _______ : banana :: crack : nut
5 Dr. : doctor :: Mr. : _________
7 head : _________ :: foot : ankle

Down

1 Snow White : _________ ::
 3 Bears : porridge
2 air : lungs :: _________ : heart
4 tame : _________ :: rise : fall
6 runner : track :: boxer : _________
Across
3 blanked : ________ :: umbrella : dry
4 ruby : red :: pumpkin : ________
5 walk : legs :: ________ : teeth
6 cheetah : ________ :: owl : wise

Down
1 float : ________ :: stand : walk
2 sail : mast :: flag : ________
3 four : eight :: half : ________
5 dress : hem :: pants : ________
Write a story about your favorite sport, team, or athlete.
All About Me and PE

About Me

My name: __________________________
My age: ________ My height: ________ My weight: ________
The color of my hair: ________________________________
The color of my eyes: ________________________________
My grade this year: _________________________________
My classroom teacher: _______________________________
My favorite food: _________________________________
My favorite animal: _________________________________
My favorite subject in school: _______________________
My favorite sportsperson or team: ___________________
My favorite sport/activity to play: __________________

About PE

What I look forward to most about PE: __________________________

What I least like about PE: ________________________________

What I most want to get better in during PE this year: _______________________

Keep this page in your portfolio or at home. Look it over at the end of the year!

Physical Education Homework is a supplement to Teaching Elementary Physical Education.
Teachers may reproduce this page for their students.
DRAW A GRAFFITI PIECE WITH SERIF LETTERS
by @Graffiti Diplomacy

SERIF and SANS SERIF LETTERS
Serifs are small decorative flourishes on the ends of some of the strokes that make up letters. Sans serif letters do not have these flourishes (the word sans means without).

STEP 1. For this exercise, we start with a tag word, "SAGE", drawn with sans serif letters. Draw your letters very lightly with a pencil so you can erase them later. We have drawn very dark lines in this example just so you can see it better.

STEP 2. Next, add serifs to the ends of each stroke.

NOTE: The word SAGE means a very wise, thoughtful person. It is also a type of green plant, or can be someone's name.

STEP 3. Draw rectangular bars all around the strokes of each letter. Where the strokes are curved, make the bars curved.

STEP 4. Erase all of the lines inside of the letters and leave only the outside lines. These letters are now called outline letters with serifs or block letters with serifs.

Go to our website @graffitidiplomacy.com for more free lessons
STEP 5. Trace over the outlines with a fine point dark magic marker, smoothing over any rough or uneven edges. Add some small rectangular bits.

TIP: Sharpies work really great for outlining, but be sure to put a piece of cardboard under your paper, because a Sharpie will leak through paper and stain your table.

STEP 6. Time to make your letters three dimensional or 3D: From the bottom of each letter and every corner on the outside of the letters, draw a straight line downwards towards the left. Make all of these downwards lines approximately the same length.

STEP 7. Draw a line from the tip of each downward line to the line directly next to it. Follow the shape of the letters, curving the lines where necessary. Color in the 3D with a dark color.

STEP 8. Draw an outline all around the outer edges of the letters about 1/4" away to form a forcefield. Add some drips on top of the letters. Use a colored pencil to add a touch of shading around the outside edge of the forcefield. You are done. Great job!

Go to our website @graffitidiplomacy.com for more free lessons
Cryptograms are messages or words written in code. In this puzzle, we’ve used numbers to write some of the words used to talk about music. Each number stands for one letter. Use the letter clues below and your best secret-agent skills to crack the code. Hint: Once you know the letter each number stands for, write it in the chart below.

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>T</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
</tbody>
</table>

1. __ __ __ _M_ __ __ is the speed of music.

2. __ __ __ __ _D_ __ __ __ is another name for the tune of a piece of music. When you hear one you like, sometimes it gets stuck in your head.

3. The louds and softs in music are called __ __ __ __ __ __ __ __ __ __ __ __ __ __.
 Examples are forte and piano.

4. _F_ __ __ __ __ is the shape of a piece of music. There are lots of different kinds. You may have played or sung the AB kind.

5. _C_ __ __ __ __ __ __ __ __ __ __ __ _ is the word for singing by yourself, without any instruments.

6. Each instrument makes its own special, or _unique_, sound.
 This unique sound is called __ __ __ __ __ __ __ __ __ __ __ __ __ __.

7. When musicians make up the notes they are playing, we say they are __ __ __ __ _S_ __ __. Jazz musicians do this a lot.

8. A part or section of a melody is called a __ __ __ __ __ __ __ __ __ __ __ __ __ __.
THE SPELLING BEE

DIRECTIONS: The Spelling Bee needs your help! Fill in the blanks for each word with the correct pitch letter names from the CLUES. Yikes! The words are mispelled! Can you unscramble the words to match the pictures below?

CLUES: pitch letter names

SHOW WHAT YOU KNOW: Now help the Spelling Bee by drawing the notes from above in the correct order on the lines and spaces below to spell the words correctly. Next, fill in the blanks with the pitch letter names. Hooray! Correct spelling!